Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(7): 104925, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328105

RESUMO

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) infection by reducing the intracellular dNTP pool. We have shown that SAMHD1 suppresses nuclear factor kappa-B activation and type I interferon (IFN-I) induction by viral infection and inflammatory stimuli. However, the mechanism by which SAMHD1 inhibits IFN-I remains unclear. Here, we show that SAMHD1 inhibits IFN-I activation induced by the mitochondrial antiviral-signaling protein (MAVS). SAMHD1 interacted with MAVS and suppressed MAVS aggregation in response to Sendai virus infection in human monocytic THP-1 cells. This resulted in increased phosphorylation of TANK binding kinase 1 (TBK1), inhibitor of nuclear factor kappa-B kinase epsilon (IKKε), and IFN regulatory factor 3 (IRF3). SAMHD1 suppressed IFN-I activation induced by IKKε and prevented IRF7 binding to the kinase domain of IKKε. We found that SAMHD1 interaction with the inhibitory domain (ID) of IRF7 (IRF7-ID) was necessary and sufficient for SAMHD1 suppression of IRF7-mediated IFN-I activation in HEK293T cells. Computational docking and molecular dynamics simulations revealed possible binding sites between IRF7-ID and full-length SAMHD1. Individual substitution of F411, E416, or V460 in IRF7-ID significantly reduced IRF7 transactivation activity and SAMHD1 binding. Furthermore, we investigated the role of SAMHD1 inhibition of IRF7-mediated IFN-I induction during HIV-1 infection. We found that THP-1 cells lacking IRF7 expression had reduced HIV-1 infection and viral transcription compared to control cells, indicating a positive role of IRF7 in HIV-1 infection. Our findings suggest that SAMHD1 suppresses IFN-I induction through the MAVS, IKKε, and IRF7 signaling axis.


Assuntos
Infecções por HIV , Interferon Tipo I , Proteína 1 com Domínio SAM e Domínio HD , Humanos , Células HEK293 , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Infecções por HIV/metabolismo , Transdução de Sinais
2.
J Invest Dermatol ; 142(4): 1032-1039.e6, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34606884

RESUMO

A potential role of Staphylococcus aureus in bullous pemphigoid was explored by examining the colonization rate in patients with new-onset disease compared with that in age- and sex-matched controls. S. aureus colonization was observed in 85% of bullous pemphigoid lesions, 3-6-fold higher than the nares or unaffected skin from the same patients (P ≤ 0.003) and 6-fold higher than the nares or skin of controls (P ≤ 0.0015). Furthermore, 96% of the lesional isolates produced the toxic shock syndrome toxin-1 superantigen, and most of these additionally exhibited homogeneous expression of the enterotoxin gene cluster toxins. Toxic shock syndrome toxin-1‒neutralizing antibodies were not protective against colonization. However, S. aureus colonization was not observed in patients who had recently received antibiotics, and the addition of antibiotics with staphylococcal coverage eliminated S. aureus and resulted in clinical improvement. This study shows that toxic shock syndrome toxin-1‒positive S. aureus is prevalent in bullous pemphigoid lesions and suggests that early implementation of antibiotics may be of benefit. Furthermore, our results suggest that S. aureus colonization could provide a source of infection in patients with bullous pemphigoid, particularly in the setting of high-dose immunosuppression.


Assuntos
Penfigoide Bolhoso , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Toxinas Bacterianas , Enterotoxinas/toxicidade , Humanos , Penfigoide Bolhoso/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo , Superantígenos/genética
3.
PLoS Pathog ; 17(3): e1009421, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690734

RESUMO

N6-methyladenosine (m6A) is a prevalent RNA modification that plays a key role in regulating eukaryotic cellular mRNA functions. RNA m6A modification is regulated by two groups of cellular proteins, writers and erasers that add or remove m6A, respectively. HIV-1 RNA contains m6A modifications that modulate viral infection and gene expression in CD4+ T cells. However, it remains unclear whether m6A modifications of HIV-1 RNA modulate innate immune responses in myeloid cells that are important for antiviral immunity. Here we show that m6A modification of HIV-1 RNA suppresses the expression of antiviral cytokine type-I interferon (IFN-I) in differentiated human monocytic cells and primary monocyte-derived macrophages. Transfection of differentiated monocytic U937 cells with HIV-1 RNA fragments containing a single m6A-modification significantly reduced IFN-I mRNA expression relative to their unmodified RNA counterparts. We generated HIV-1 with altered m6A levels of RNA by manipulating the expression of the m6A erasers (FTO and ALKBH5) or pharmacological inhibition of m6A addition in virus-producing cells, or by treating HIV-1 RNA with recombinant FTO in vitro. HIV-1 RNA transfection or viral infection of differentiated U937 cells and primary macrophages demonstrated that HIV-1 RNA with decreased m6A levels enhanced IFN-I expression, whereas HIV-1 RNA with increased m6A modifications had opposite effects. Our mechanistic studies indicated that m6A of HIV-1 RNA escaped retinoic acid-induced gene I (RIG-I)-mediated RNA sensing and activation of the transcription factors IRF3 and IRF7 that drive IFN-I gene expression. Together, these findings suggest that m6A modifications of HIV-1 RNA evade innate immune sensing in myeloid cells.


Assuntos
Infecções por HIV/imunologia , HIV-1/metabolismo , Interferon Tipo I/biossíntese , Células Mieloides/virologia , Processamento Pós-Transcricional do RNA/imunologia , RNA Viral/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação da Expressão Gênica/imunologia , HIV-1/imunologia , Humanos , Imunidade Inata/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Monócitos/metabolismo , Monócitos/virologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , RNA Viral/imunologia
4.
J Virol ; 95(3)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33177202

RESUMO

Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts HIV-1 replication by limiting the intracellular deoxynucleoside triphosphate (dNTP) pool. SAMHD1 also suppresses the activation of NF-κB in response to viral infections and inflammatory stimuli. However, the mechanisms by which SAMHD1 negatively regulates this pathway remain unclear. Here, we show that SAMHD1-mediated suppression of NF-κB activation is modulated by two key mediators of NF-κB signaling, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and transforming growth factor ß-activated kinase 1 (TAK1). We compared NF-κB activation stimulated by interleukin (IL)-1ß in monocytic THP-1 control and SAMHD1 knockout (KO) cells with and without partial TRAF6 knockdown (KD), or in cells treated with TAK1 inhibitors. Relative to control cells, IL-1ß-treated SAMHD1 KO cells showed increased phosphorylation of the inhibitor of NF-κB (IκBα), an indication of pathway activation, and elevated levels of TNF-α mRNA. Moreover, SAMHD1 KO combined with TRAF6 KD or pharmacological TAK1 inhibition reduced IκBα phosphorylation and TNF-α mRNA to the level of control cells. SAMHD1 KO cells infected with single-cycle HIV-1 showed elevated infection and TNF-α mRNA levels compared to control cells, and the effects were significantly reduced by TRAF6 KD or TAK1 inhibition. We further demonstrated that overexpressed SAMHD1 inhibited TRAF6-stimulated NF-κB reporter activity in HEK293T cells in a dose-dependent manner. SAMHD1 contains a nuclear localization signal (NLS), but an NLS-defective SAMHD1 exhibited a suppressive effect similar to the wild-type protein. Our data suggest that the TRAF6-TAK1 axis contributes to SAMHD1-mediated suppression of NF-κB activation and HIV-1 infection.IMPORTANCE Cells respond to pathogen infection by activating a complex innate immune signaling pathway, which culminates in the activation of transcription factors and secretion of a family of functionally and genetically related cytokines. However, excessive immune activation may cause tissue damage and detrimental effects on the host. Therefore, in order to maintain host homeostasis, the innate immune response is tightly regulated during viral infection. We have reported SAMHD1 as a novel negative regulator of the innate immune response. Here, we provide new insights into SAMHD1-mediated negative regulation of the NF-κB pathway at the TRAF6-TAK1 checkpoint. We show that SAMHD1 inhibits TAK1 activation and TRAF6 signaling in response to proinflammatory stimuli. Interestingly, TRAF6 knockdown in SAMHD1-deficient cells significantly inhibited HIV-1 infection and activation of NF-κB induced by virus infection. Our research reveals a new negative regulatory mechanism by which SAMHD1 participates in the maintenance of cellular homeostasis during HIV-1 infection and inflammation.


Assuntos
Regulação da Expressão Gênica , Infecções por HIV/imunologia , Imunidade Inata/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , NF-kappa B/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/genética , NF-kappa B/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 117(20): 10989-10999, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32354997

RESUMO

Staphylococcus aureus infections can lead to diseases that range from localized skin abscess to life-threatening toxic shock syndrome. The SrrAB two-component system (TCS) is a global regulator of S. aureus virulence and critical for survival under environmental conditions such as hypoxic, oxidative, and nitrosative stress found at sites of infection. Despite the critical role of SrrAB in S. aureus pathogenicity, the mechanism by which the SrrAB TCS senses and responds to these environmental signals remains unknown. Bioinformatics analysis showed that the SrrB histidine kinase contains several domains, including an extracellular Cache domain and a cytoplasmic HAMP-PAS-DHp-CA region. Here, we show that the PAS domain regulates both kinase and phosphatase enzyme activity of SrrB and present the structure of the DHp-CA catalytic core. Importantly, this structure shows a unique intramolecular cysteine disulfide bond in the ATP-binding domain that significantly affects autophosphorylation kinetics. In vitro data show that the redox state of the disulfide bond affects S. aureus biofilm formation and toxic shock syndrome toxin-1 production. Moreover, with the use of the rabbit infective endocarditis model, we demonstrate that the disulfide bond is a critical regulatory element of SrrB function during S. aureus infection. Our data support a model whereby the disulfide bond and PAS domain of SrrB sense and respond to the cellular redox environment to regulate S. aureus survival and pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas , Sequência de Bases , Biofilmes , Domínio Catalítico , Modelos Animais de Doenças , Endocardite , Enterotoxinas , Feminino , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/metabolismo , Masculino , Modelos Moleculares , Mutação , Oxirredução , Domínios Proteicos , Coelhos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Sepse , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Superantígenos , Thermotoga maritima , Virulência/genética , Virulência/fisiologia
6.
mSphere ; 4(6)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31826969

RESUMO

Staphylococcus aureus is the leading cause of skin and soft tissue infections, bacteremia, infective endocarditis, osteoarticular, pleuropulmonary, and device-related infections. Virulence factors secreted by S. aureus, including superantigens and cytotoxins, play significant roles in driving disease. The ability to identify virulence factors present at the site of infection will be an important tool in better identifying and understanding how specific virulence factors contribute to disease. Previously, virulence factor production has been determined by culturing S. aureus isolates and detecting the mRNA of specific virulence factors. We demonstrated for the first time that virulence factors can be directly detected at the protein level from human samples, removing the need to first culture isolated bacteria. Superantigens and cytotoxins were detected and quantified with a Western dot blot assay by using reconstituted skin swabs obtained from patients with atopic dermatitis. This methodology will significantly enhance our ability to investigate the complex host-microbe environment and the effects various therapies have on virulence factor production. Overall, the ability to directly quantify virulence factors present at the site of infection or colonization will enhance our understanding of S. aureus-related diseases and help identify optimal treatments.IMPORTANCE For the first time, we show that secreted staphylococcal virulence factors can be quantified at the protein level directly from skin swabs obtained from the skin of atopic dermatitis patients. This technique eliminates the need to culture Staphylococcus aureus and then test the strain's potential to produce secreted virulence factors. Our methodology shows that secreted virulence factors are present on the skin of atopic patients and provides a more accurate means of evaluating the physiological impact of S. aureus in inflammatory diseases such as atopic dermatitis.


Assuntos
Dermatite Atópica/complicações , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Fatores de Virulência/biossíntese , Dermatite Atópica/microbiologia , Humanos , Proteoma/análise , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Staphylococcus aureus/genética , Fatores de Virulência/genética
7.
mBio ; 10(2)2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890614

RESUMO

Mucosal and skin tissues form barriers to infection by most bacterial pathogens. Staphylococcus aureus causes diseases across these barriers in part dependent on the proinflammatory properties of superantigens. We showed, through use of a CRISPR-Cas9 CD40 knockout, that the superantigens toxic shock syndrome toxin 1 (TSST-1) and staphylococcal enterotoxins (SEs) B and C stimulated chemokine production from human vaginal epithelial cells (HVECs) through human CD40. This response was enhanced by addition of antibodies against CD40 through an unknown mechanism. TSST-1 was better able to stimulate chemokine (IL-8 and MIP-3α) production by HVECs than SEB and SEC, suggesting this is the reason for TSST-1's exclusive association with menstrual TSS. A mutant of TSST-1, K121A, caused TSS in a rabbit model when administered vaginally but not intravenously, emphasizing the importance of the local vaginal environment. Collectively, our data suggested that superantigens facilitate infections by disruption of mucosal barriers through their binding to CD40, with subsequent expression of chemokines. The chemokines facilitate TSS and possibly other epithelial conditions after attraction of the adaptive immune system to the local environment.IMPORTANCE Menstrual toxic shock syndrome (TSS) is a serious infectious disease associated with vaginal colonization by Staphylococcus aureus producing the exotoxin TSS toxin 1 (TSST-1). We show that menstrual TSS occurs after TSST-1 interaction with an immune costimulatory molecule called CD40 on the surface of vaginal epithelial cells. Other related toxins, where the entire family is called the superantigen family, bind to CD40, but not with a high-enough apparent affinity to cause TSS; thus, TSST-1 is the only exotoxin superantigen associated. Once the epithelial cells become activated by TSST-1, they produce soluble molecules referred to as chemokines, which in turn facilitate TSST-1 activation of T lymphocytes and macrophages to cause the symptoms of TSS. Identification of small-molecule inhibitors of the interaction of TSST-1 with CD40 may be useful so that they may serve as additives to medical devices, such as tampons and menstrual cups, to reduce the incidence of menstrual TSS.


Assuntos
Antígenos CD40/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Staphylococcus aureus/fisiologia , Superantígenos/metabolismo , Toxinas Bacterianas/metabolismo , Antígenos CD40/genética , Células Cultivadas , Enterotoxinas/metabolismo , Técnicas de Inativação de Genes , Humanos
8.
Transfusion ; 57(5): 1299-1303, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28205241

RESUMO

BACKGROUND: Contamination of platelet concentrates (PCs) with Staphylococcus aureus is one of the most significant ongoing transfusion safety risks in developed countries. CASE REPORT: This report describes a transfusion reaction in an elderly patient diagnosed with acute myeloid leukemia, transfused with a 4-day-old buffy coat PC through a central venous catheter. The transfusion was interrupted when a large fibrous clot in the PC obstructed infusion pump flow. Shortly afterward, a red blood cell (RBC) unit transfusion started. After septic symptoms were developed, the RBC transfusion was also interrupted. While the RBC unit tested negative for bacterial contamination, the PC and the patient samples were found to be contaminated with a S. aureus strain that exhibited the same phenotypic and genome sequencing profiles. The isolated S. aureus forms biofilms and produces the superantigen enterotoxin-like U, which was detected in a sample of the transfused PCs. The patient received posttransfusion antibiotic treatment and had her original central line removed and replaced. DISCUSSION: As the implicated PC had been tested for bacterial contamination during routine screening yielding negative results, this is a false-negative transfusion sepsis case. Using a point-of-care test could have prevented the transfusion reaction. This report highlights the increasing incidence of S. aureus as a major PC contaminant with grave clinical implications. Importantly, S. aureus is able to interact with platelet components resulting in visible changes in PCs. CONCLUSION: Visual inspection of blood components before transfusion is an essential safety practice to interdict the transfusion of bacterially contaminated units.


Assuntos
Transfusão de Plaquetas/efeitos adversos , Sepse/etiologia , Infecções Estafilocócicas/transmissão , Staphylococcus aureus , Reação Transfusional/microbiologia , Idoso , Antibacterianos/uso terapêutico , Cateteres Venosos Centrais/microbiologia , Transfusão de Eritrócitos/efeitos adversos , Feminino , Humanos , Leucemia Mieloide Aguda/terapia
9.
mSphere ; 1(6)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27981233

RESUMO

Atopic dermatitis (AD) is an inflammatory skin condition strongly associated with Staphylococcus aureus colonization and infection. S. aureus strains shift in populations in ~10-year intervals depending on virulence factors. Shifts in S. aureus virulence factors may in part explain the racial differences observed in the levels of prevalence and severity of AD. AD S. aureus isolates collected from 2011 to 2014 (103 isolates) and in 2008 (100 isolates) were examined for the prevalence of genes encoding superantigens (SAgs). The strains from 2011 to 2014 were obtained from AD patients as a part of the National Institute of Allergy and Infectious Diseases (NIAID) Atopic Dermatitis Research Network (ADRN). The prevalence of SAg genes was investigated temporally and racially. The enterotoxin gene cluster (EGC) was more prevalent in the 2011-2014 AD isolates than in the 2008 AD isolates. The prevalences of virulence factor genes were similar in European American (EA) and Mexican American (MA) patients but differed in 6 of 22 SAg genes between EA and African American (AA) or MA and AA isolates; notably, AA isolates lacked tstH, the gene encoding toxic shock syndrome toxin 1 (TSST-1). The presence of tstH and sel-p (enterotoxin-like P) was associated with decreased clinical severity and increased blood eosinophils, respectively. The EGC is becoming more prevalent, consistent with the previously observed 10 years of cycling of S. aureus strains. Race-specific S. aureus selection may account for differences in virulence factor profiles. The lack of TSST-1-positive (TSST-1+) AD S. aureus in AA is consistent with the lack of AAs acquiring TSST-1-associated menstrual toxic shock syndrome (TSS). IMPORTANCE Monitoring pathogen emergence provides insight into how pathogens adapt in the human population. Secreted virulence factors, important contributors to infections, may differ in a manner dependent on the strain and host. Temporal changes of Staphylococcus aureus toxigenic potential, for example, in encoding toxic shock syndrome toxin 1 (TSST-1), contributed to an epidemic of TSS with significant health impact. This study monitored changes in atopic dermatitis (AD) S. aureus isolates and demonstrated both temporal and host infection differences according to host race based on secreted superantigen potential. The current temporal increase in enterotoxin gene cluster superantigen prevalence and lack of the gene encoding TSST-1 in AAs predict differences in infection types and presentations.

10.
PLoS One ; 11(4): e0154762, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27124393

RESUMO

BACKGROUND: Superantigens are indispensable virulence factors for Staphylococcus aureus in disease causation. Superantigens stimulate massive immune cell activation, leading to toxic shock syndrome (TSS) and contributing to other illnesses. However, superantigens differ in their capacities to induce body-wide effects. For many, their production, at least as tested in vitro, is not high enough to reach the circulation, or the proteins are not efficient in crossing epithelial and endothelial barriers, thus remaining within tissues or localized on mucosal surfaces where they exert only local effects. In this study, we address the role of TSS toxin-1 (TSST-1) and most importantly the enterotoxin gene cluster (egc) in infective endocarditis and sepsis, gaining insights into the body-wide versus local effects of superantigens. METHODS: We examined S. aureus TSST-1 gene (tstH) and egc deletion strains in the rabbit model of infective endocarditis and sepsis. Importantly, we also assessed the ability of commercial human intravenous immunoglobulin (IVIG) plus vancomycin to alter the course of infective endocarditis and sepsis. RESULTS: TSST-1 contributed to infective endocarditis vegetations and lethal sepsis, while superantigens of the egc, a cluster with uncharacterized functions in S. aureus infections, promoted vegetation formation in infective endocarditis. IVIG plus vancomycin prevented lethality and stroke development in infective endocarditis and sepsis. CONCLUSIONS: Our studies support the local tissue effects of egc superantigens for establishment and progression of infective endocarditis providing evidence for their role in life-threatening illnesses. In contrast, TSST-1 contributes to both infective endocarditis and lethal sepsis. IVIG may be a useful adjunct therapy for infective endocarditis and sepsis.


Assuntos
Toxinas Bacterianas/genética , Endocardite Bacteriana/microbiologia , Enterotoxinas/genética , Sepse/microbiologia , Choque Séptico/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Superantígenos/genética , Animais , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Masculino , Coelhos , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Superantígenos/imunologia , Vancomicina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...